PART : CHEMISTRY

1. A weak acid HA of concentration 0.001 mole/litre have conductance 2×10^{-5} Scm⁻¹ and molar conductivity at infinite dilution is 190 Scm² mole⁻¹ then value of Ka of weak acid is [x] × 10⁻⁶, then value of x in nearest

۸ne						
Alls.	11.00	0 40-5 403				
Sol.	$\lambda_{\rm M}^{\rm C} = \frac{{\rm K} \times 1000}{{\rm M}}$	$=\frac{2\times10^{-3}\times10^{-3}}{10^{-3}}$	= 20 S	cm ³ mole ⁻¹		
	For weak acid ($\alpha) = \frac{\lambda_{\rm M}^{\rm C}}{\lambda_{\rm M}^{\infty}} = \frac{20}{190} =$	= <mark>2</mark> 19			
	$Ka = \frac{C\alpha^2}{1-\alpha} \cong C\alpha$	$u^2 = 10^{-3} \times \left(\frac{2}{19}\right)$	$\Big)^2 = 0.0$	11 × 10 ⁻³ = 11 ×	< 10 ^{−6}	
	So <mark>, x =</mark> 11					
2.	List –I			List –∏		
	(a) NaOH		(i)	Acid		
	(b) Be(OH)	2	(ii)	Base		
	(c) Ca(OH)	2	(iii)	Amphoteric		
	(d) AI(OH)₃					
	(e) B(OH) ₃					
	Correct Matchin	g of List–I and I	_ist –II is	s :		
	(1) (a) – (ii), (b)	- (iii), (c) - (ii),	(d) – (ii	ii), (e) – (i)		
	(2) (a) – (ii), (b)	– (ii), (c) – (iii),	(d) – (ii	ii), (e) – (iii)		
	(3 <mark>) (</mark> a) – (ii), (b)	– (i), (c) – (iii),	(d) – (ii)), (e) – (i)		
	(4) (a) – (ii), (b)	- (iii), (c) - (ii),	(d) – (ii), (e) – (ii)		
Ans.	(1)					
Sol.	Species		Nature			
	(i) NaOH		Base			
	(ii) Ca(OH)	2	Base	nance"		
		2 pr tomorro /	Ampho	teric		
	(IV) AI(OH) ₃		Ampho			
	(V) B(OH)3		ACIDIC			

3. Lattice Parameter for a crystal Lattice is $a \neq b \neq c$ and $\alpha = 90^{\circ}$, $\gamma = 90$ and $\beta = 120^{\circ}$ this represent which type of Bravais Lattice.

(1) Monoclinic (2) Triclinic (3) Hexagonal (4) Orthorhombic Ans. (1)

Sol. Unit Cell Lattice Parameter

(i) Monoclinic $a \neq b \neq c$ & $\alpha = 90, \gamma = 90 \& \beta = 120^{\circ}$

Seven Crystal System

Educating for	S.No.	Crystal System	Edge length	Angles
	e 1	Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$ for the term
	2	Te tragonal	a = b ≠ c	$\alpha = \beta = \gamma = 90^{\circ}$
	3	Or thorhombic	a≠b≠c	$\alpha = \beta = \gamma = 90^{\circ}$
Reso	nar			$\alpha = \gamma = 90^{\circ}$
Educating for b	4	Mo noclinic	a≠b≠c	β ≠ 120°,
	5			$\neq 90^{\circ}, \neq 60^{\circ}$
	nan etter to	Hexagonal	$a - b \neq c$	$\alpha = \beta = 90^{\circ}$
	J	nexagonal	a=b≠c	γ ≠ 120°
Pern	6	Rhombohedral	a-h-c	$\alpha = \beta = \gamma \neq 0.0^{\circ}$
Educating for p	etter to	or Trigonal	a = 5 = 0	$\alpha - p - \gamma \neq 90$
	7	Triclinic	a≠b≠c	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

4. Number of Geometrical isomers of complex's [Ni(CO)₄], [PtCl₂(NH₃)₂], [RuCl₃(NH₃)₃], are respectively : (1) 0, 2, 2 (2) 2, 2, 2 (3) 0, 1, 2 (4) 0, 0, 2

oro" Decomence" Decomence" Decomence

Sol.	$H_2O(\ell) \longrightarrow H_2O(g)$				
	$\Delta H^{\circ} = \Delta U^{\circ} + \Delta n_{g} RT$				
	$\Delta H^{0} - \Delta U^{0} = \Delta n_{g} RT$				
	= 1 × 8.3 × 373 = 3099.63 J/Mole				
	= 30.9963 × 10 ² J/Mole				
	= 31 × 10 ² J/Mole				
8.	Density of aqueous solution of NaOH is 1.2 g/c	m³, then fi	nd its molality	,	
	[Given density of water = 1 g/cm ³]				
Ans.	05.00				
Sol.	Let volume of solution is x one				
	So mass of solution = 1.2 x				
	& mass of water (solvent) = x gram				
	So mass of solute = 0.2 x gram				
	Molality = $\frac{W_{solute} \times 1000}{GMM_{solute} \times W_{solvent}}$				
	$=\frac{0.2x \times 1000}{40 \times x} = \frac{200}{40} = 5m$				
	Ans = 5m				
9.	Identify the wrong statement from following abo	ut Ellingha	am diagram		
	(1) It gives rate of reaction (2) It tells about the stability of oxid				ng for better tomorrow
	(3) It gives idea about reduction of metal oxide	(4) It giv	es idea about	free energy o	f reduction.
Ans.	(1)				
Sol.	Ellingham diagram do not gives any idea about	rate of rea	action, rest all	statement are	e correct
10.	The main product of electrolysis of conc. H ₂ SO ₂	is			
	(1) SO ₃	(2) HO ₃ s	SO – OSO₃H		
	$(3) HO_2SO - OSO_2H$	(4) O ₂			
Ans.	(2) Resonance Resonance Educating for better temory				
Sol.	Main product of electrolysis of conc. H ₂ SO ₄ is H	l ₂ S ₂ O ₈ tha	it is HO₃SO–C	SO₃H	

	JEE	MAIN-2021 DATE : 27	'-07-2021 (SHIFT-1) PAPE	R-1 MEMORY BASED
11.	Oxidation numbe	r of P in H ₄ P ₂ O ₇ , H ₄ P ₂	$_{2}O_{5}$ and H $_{4}P_{2}O_{6}$ are respe	ctively:
	(1) 5, 3, 4	(2) 3, 4, 5	(3) 5, 4, 3	(4) 5, 4, 5
Ans.	(1) Reson			
Sol.	Compound		Oxidation number of P	
	(i) H4P2O7		5 Kesonance Educating for better tomorrow	
	(ii) H ₄ P ₂ O ₅		o3ance [*] Res	
	(iii) H ₄ P ₂ O ₆		4	
12.	St <mark>atem</mark> ent–I : Ru	ther ford's model of A	tom cannot explain hydro	gen Spectrum
	Statement–II : Be	ohr's model is not in a	ccordance with heisenbe	rg's uncertainty principle
	(1) Both statemer	nts are true		
	(2 <mark>) Bot</mark> h statemer	nt are false		
	(3) Statement–I is	s true and Statement-	-II is false	
	(4) Statement–I is	s false and Statement	–II is true	
Ans.	(1) ⁶			
Sol.	Theory Based			
13.	Statement–I : Ge	nerally halides of Li a	re covalent	
	Statement-II : Lit	hium has high polaris	ing power	
	(1 <mark>) Bot</mark> h Stateme	nt–I & Statement–II a	re correct	
	(2) Statement–I is	s correct and Stateme	ent-II is incorrect	
	(3) Statement–I is	s incorrect and Staten	nent–II is correct	
	(4 <mark>) Bo</mark> th Stateme	nt–I and Statement–II	are incorrect	
Ans.	(1)			
Sol.	Due to small size	of Li have high polari	sing power so most of the	e compound of Li are covalent
14. Re	Unit of rate const	ant of n th order reaction	on is :	
	(1) mole ¹⁻ⁿ Lit. ⁿ⁻¹	Sec ⁻¹	(2) mole ^x Lit. ^{- n}	Sec ⁻¹
	(3 <mark>) mo</mark> le⁻n Lit. ⁿ Se	∋C ⁻¹	(4) m <mark>ole^{n −1} Lit</mark> .	^{1- n} Sec ⁻¹
Ans.	e (1) nance			
Sol.	Rate = k[A] ⁿ			
	mole [mo	le] ⁿ		
	$\frac{1}{\text{Lit} \times \text{Sec}} = \text{k} \left[\frac{1}{\text{Lit}} \right]$	t Resonance		
	\rightarrow Unit of k = (mo	$(1-n)^{1-n}$ it $n - \frac{1}{2} Sec^{-1}$		
	\rightarrow on or $\kappa = (mc$			

openso" Desopenso" Desopenso" Desopenso

Deservero" Coservero" Coservero" Coservero"

	JEE MAIN-2021 DATE : 27-07-2021 (SHIFT-1) PAPER-1 MEMORY BASED
17. Re	$\begin{array}{c} & & H_{3}PO_{4} \\ \hline & & H_{3}PO_{4} \\ \hline & & H_{2}O_{2}/OH \end{array} \xrightarrow{(BH_{3})_{2}} Product (Y) is : \\ & & H_{2}O_{2}/OH \end{array}$
Ans.	(2) hance Resonance Resonance Resonance
Sol.	$OH \xrightarrow{H_3PO_4} OH \xrightarrow{CH_3} (BH_3)_2 \xrightarrow{\Theta} OH \xrightarrow{CH_3} OH$
18.	$CH_4 + I_2 \xrightarrow{hv} CH_4 + H_4$
	What shall be added so the reaction proceeds in one direction-
	(1) Con.HIO ₃ (2) HOCI (3) NH ₃ (4) HNO ₂
Ans. Sol.	(1) $CH_4 + I_2 \Longrightarrow CH_3I + HI$
	Reaction is reversible due to reducing nature of HI. Oxidising agent like HNO ₃ , HIO ₃ should be added to make it irreversible (one direction).
19.	Monosaccharide and disaccharides are differentiate by
Ane	(1) lodine test (2) Seliwanoff test (3) Barfoed test (4) Tollen's test
Sol.	Carbohydrates are polyhydroxy aldehydes and ketones. Carbohydrates may have an aldehyde group (aldoses) or ketose group. Barfoed's test distinguishes monosaccharides from disaccharides. In this test, copper acetate in dilute acid is reduced in 30 seconds by monosaccharides whereas disaccharides take several minutes.
20.	In DNA complementary base Thymine is-
	(1) Uracil (2) Adenine (3) Cytosine (4) Guanine
Ans.	(2) Resonance Resonance Resonance Educating for batter tomorrow
Sol.	In DNA thymine bind with adenine by to hydrogen bonding.

Deservers' 🔜 Deservers' 🔜 Deservers' 🔜 Deservers'

Decompose Decompose Decompose Decompose