PART : CHEMISTRY

1. A weak acid HA of concentration 0.001 mole/litre have conductance $2 \times 10^{-5} \mathrm{Scm}^{-1}$ and molar conductivity at infinite dilution is $190 \mathrm{Scm}^{2} \mathrm{~mole}^{-1}$ then value of Ka of weak acid is $[\mathbf{x}] \times 10^{-6}$, then value of \mathbf{x} in nearest integer is :

Ans. 11.00
Sol. $\quad \lambda_{M}^{C}=\frac{K \times 1000}{M}=\frac{2 \times 10^{-5} \times 10^{3}}{10^{-3}}=20 \mathrm{Scm}^{3} \mathrm{~mole}^{-1}$
For weak acid $(\alpha)=\frac{\lambda_{M}^{C}}{\lambda_{M}^{\infty}}=\frac{20}{190}=\frac{2}{19}$
$\mathrm{Ka}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha} \cong \mathrm{C} \alpha^{2}=10^{-3} \times\left(\frac{2}{19}\right)^{2}=0.011 \times 10^{-3}=11 \times 10^{-6}$
So, $x=11$
2.

List -I

(a) NaOH
(b) $\mathrm{Be}(\mathrm{OH})_{2}$
(c) $\quad \mathrm{Ca}(\mathrm{OH})_{2}$
(d) $\quad \mathrm{Al}(\mathrm{OH})_{3}$
(e) $\quad \mathrm{B}(\mathrm{OH})_{3}$

Correct Matching of List-I and List -II is :
(1) (a) - (ii), (b) - (iii), (c) - (ii), (d) - (iii), (e) - (i)
(2) (a) - (ii), (b) - (ii), (c) - (iii), (d) - (iii), (e) - (iii)
(3) (a) - (ii), (b) - (i), (c) - (iii), (d) - (ii), (e) - (i)
(4) (a) - (ii), (b) - (iii), (c) - (ii), (d) - (ii), (e) - (ii)

Ans. (1)
Sol.

	Species	Nature
(i)	NaOH	Base
(ii)	$\mathrm{Ca}(\mathrm{OH})_{2}$	Base
(iii)	$\mathrm{Be}(\mathrm{OH})_{2}$	Amphoteric
(iv)	$\mathrm{Al}(\mathrm{OH})_{3}$	Amphoteric
(v)	$\mathrm{B}(\mathrm{OH})_{3}$	Acidic

3. Lattice Parameter for a crystal Lattice is $\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$ and $\alpha=90^{\circ}, \gamma=90$ and $\beta=120^{\circ}$ this represent which type of Bravais Lattice.
(1) Monoclinic
(2) Triclinic
(3) Hexagonal
(4) Orthorhombic

Ans. (1)
Sol.

Unit Cell
(i) Monoclinic

Lattice Parameter

$a \neq b \neq c \quad \& \alpha=90, \gamma=90 \& \beta=120^{\circ}$

Seven Crystal System

S.No.	Crystal System	Edge length	Angles
1	Cubic	$\mathrm{a}=\mathrm{b}=\mathrm{c}$	$\alpha=\beta=\gamma=90^{\circ}$
2	Tetragonal	$\mathrm{a}=\mathrm{b} \neq \mathrm{c}$	$\alpha=\beta=\gamma=90^{\circ}$
3	Orthorhombic	$\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$	$\alpha=\beta=\gamma=90^{\circ}$
4	Monoclinic	$\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$	$\alpha=\gamma=90^{\circ}$ $\beta \neq 120^{\circ}$, $\neq 90^{\circ}, \neq 60^{\circ}$
5	Hexagonal	$\mathrm{a}=\mathrm{b} \neq \mathrm{c}$	$\alpha=\beta=90^{\circ}$ $\gamma \neq 120^{\circ}$
6	Rhombohedral	or Trigonal	Triclinic

4. Number of Geometrical isomers of complex's $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right],\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right],\left[\mathrm{RuCl}_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]$, are respectively :
(1) $0,2,2$
(2) 2, 2, 2
(3) $0,1,2$
(4) $0,0,2$

Ans. (1)
Sol.

Complex

Number of G.I.
(1) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$

0
(2) $\quad\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$

2

cis-

trans-
Geometrical isomers (cis and trans) of $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$
(3) $\left[\mathrm{RuCl}_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]$

The facial (fac) and meridional (mer) isomers of $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{3}(\mathrm{Cl})_{3}\right]$
5. Identify the correct hybridisation and Magnetic nature of complex $\left[\mathrm{MnCl}_{6}\right]^{3-}$
(1) $\mathrm{sp}^{3} \mathrm{~d}^{2}$, Diamagnetic
(2) $s p^{3} d^{2}$, Paramagnetic
(3) $d^{2} s p^{3}$, Paramagnetic
(4) $d^{2} s p^{3}$, Diamagnetic

Ans. (2)
Sol. $\quad\left[\mathrm{MnCl}_{6}\right]^{3-}$
$\Rightarrow \mathrm{Mn}^{3+} \Rightarrow 3 \mathrm{~d}^{4} \Rightarrow \mathrm{t}_{2 \mathrm{~g}}^{1,1,1}, \mathrm{e}_{\mathrm{g}}^{1,0} \Rightarrow \mathrm{sp}^{3} \mathrm{~d}^{2}$ Hybridisation \Rightarrow Paramagnetic
6. Difference between bond order of CO and NO^{+}is $\left(\frac{x}{2}\right)$, then value of ' x ' to the nearest integer

Ans. 0
Sol. Species

Bond order

(i) $\mathrm{CO} \quad 3$
(ii) NO^{+}

3

So difference in bond order $=0$
So value of $x=0$
7. The value of $(\Delta \mathrm{H}-\Delta \mathrm{U})$ for vaporisation of water at $100^{\circ} \mathrm{C}$ is ' x ' $\times 10^{2} \mathrm{~J} /$ mole, assume water vapour to be an ideal gas [Take $R=8.31 \mathrm{~J} /$ mole. K]
[report your answer to nearest integer]
Ans. 31.00

Sol. $\mathrm{H}_{2} \mathrm{O}(\ell) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\begin{aligned}
& \Delta \mathrm{H}^{\circ}=\Delta \mathrm{U}^{\circ}+\Delta \mathrm{n}_{g} R T \\
& \begin{aligned}
\Delta \mathrm{H}^{\circ}-\Delta \mathrm{U}^{\circ}= & \Delta \mathrm{n}_{g} R T \\
& =1 \times 8.3 \times 373 \\
& =3099.63 \mathrm{~J} / \text { Mole } \\
& =30.9963 \times 10^{2} \mathrm{~J} / \text { Mole } \\
& =31 \times 10^{2} \mathrm{~J} / \text { Mole }
\end{aligned}
\end{aligned}
$$

8. Density of aqueous solution of NaOH is $1.2 \mathrm{~g} / \mathrm{cm}^{3}$, then find its molality
[Given density of water $=1 \mathrm{~g} / \mathrm{cm}^{3}$]
Ans. 05.00
Sol. Let volume of solution is x one
So mass of solution $=1.2 x$
\& mass of water (solvent) $=x$ gram
So mass of solute $=0.2 \times$ gram
Molality $=\frac{W_{\text {solute }} \times 1000}{\mathrm{GMM}_{\text {solute }} \times \mathrm{W}_{\text {solvent }}}$

$$
=\frac{0.2 x \times 1000}{40 \times x}=\frac{200}{40}=5 \mathrm{~m}
$$

Ans $=5 m$
9. Identify the wrong statement from following about Ellingham diagram
(1) It gives rate of reaction
(2) It tells about the stability of oxide
(3) It gives idea about reduction of metal oxide
(4) It gives idea about free energy of reduction.

Ans. (1)
Sol. Ellingham diagram do not gives any idea about rate of reaction, rest all statement are correct
10. The main product of electrolysis of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is
(1) SO_{3}
(2) $\mathrm{HO}_{3} \mathrm{SO}-\mathrm{OSO}_{3} \mathrm{H}$
(3) $\mathrm{HO}_{2} \mathrm{SO}-\mathrm{OSO}_{2} \mathrm{H}$
(4) O_{2}

Ans. (2)
Sol. Main product of electrolysis of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ that is $\mathrm{HO}_{3} \mathrm{SO}-\mathrm{OSO}_{3} \mathrm{H}$
11. Oxidation number of P in $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$ are respectively:
(1) $5,3,4$
(2) $3,4,5$
(3) $5,4,3$
(4) $5,4,5$

Ans. (1)

Sol. Compound
(i) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
(ii) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$
(iii) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$

Oxidation number of P
5
3
4
12. Statement-I : Ruther ford's model of Atom cannot explain hydrogen Spectrum

Statement-II : Bohr's model is not in accordance with heisenberg's uncertainty principle
(1) Both statements are true
(2) Both statement are false
(3) Statement-I is true and Statement-II is false
(4) Statement-I is false and Statement-II is true

Ans. (1)
Sol. Theory Based
13. Statement-I : Generally halides of Li are covalent

Statement-II : Lithium has high polarising power
(1) Both Statement-I \& Statement-II are correct
(2) Statement-I is correct and Statement-II is incorrect
(3) Statement-I is incorrect and Statement-II is correct
(4) Both Statement-I and Statement-II are incorrect

Ans. (1)
Sol. Due to small size of Li have high polarising power so most of the compound of Li are covalent
14. Unit of rate constant of $\mathrm{n}^{\text {th }}$ order reaction is:
(1) mole $^{1-n}$ Lit. $^{n-1}$ Sec $^{-1}$
(2) mole x Lit. $^{-n}$ Sec $^{-1}$
(3) mole $^{-n}$ Lit. n Sec $^{-1}$
(4) mole $^{\mathrm{n}-1}$ Lit. $^{1-\mathrm{n}} \mathrm{Sec}^{-1}$

Ans. (1)
Sol. Rate $=k[A]^{n}$
$\frac{\text { mole }}{\text { Lit } \times \text { Sec }}=k\left[\frac{\text { mole }}{\text { Lit }}\right]^{n}$
\Rightarrow Unit of $\mathrm{k}=(\text { mole })^{1-\mathrm{n}}$ Lit. $^{\mathrm{n}-1}$ Sec $^{-1}$
15. Equilibrium constant Kc for dissociation of PCl_{5} according to $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ is 1.844 . Initially 3 mole of PCl_{5} is present in a flask of 1 Lit., then number of moles of PCl_{5} after equilibrium is set Up. Is :
Ans. 1.60

Sol.
Initially
At equilibrium
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \mathrm{K} \mathrm{C}=1.844$
3
0 0
$(3-x)$
$x \quad x$
$\mathrm{K}_{\mathrm{c}}=\frac{\mathrm{x}^{2}}{3-\mathrm{x}}=1.844$
$x^{2}=1.844(3-x)$
$x^{2}=5.532-1.844 x$
$x^{2}+1.844 x-5.532=0$
$x=\frac{-1.844 \pm \sqrt{(1.844)^{2}-4(1)(-5.532)}}{2}$
On solving
$x=1.60$
So at equilibrium number moles of $\mathrm{PCl}_{5}=1.60$
16. According to Freundlich adsorption isotherm $\left(\frac{x}{m}\right)=k(P)^{\frac{1}{n}}$ when pressure increased 2 times, then extent of adsorption becomes 64 times. Find the value of $\left(\frac{1}{n}\right)$.

Ans. 6
Sol. $\left(\frac{x}{m}\right)=k(P)^{\frac{1}{n}}$
$64\left(\frac{x}{m}\right)=k(2 P)^{\frac{1}{n}}$
From equation (i) to (ii)
So $\frac{1}{n}=6$
17.

(1)

(2)

(3)

(4)

Ans. (2)

Sol.

18.

What shall be added so the reaction proceeds in one direction-
(1) Con. HIO_{3}
(2) HOCl
(3) NH_{3}
(4) HNO_{2}

Ans. (1)
Sol. $\mathrm{CH}_{4}+\mathrm{I}_{2} \rightleftharpoons \mathrm{CH}_{3} \mathrm{I}+\mathrm{HI}$
Reaction is reversible due to reducing nature of HI . Oxidising agent like $\mathrm{HNO}_{3}, \mathrm{HIO}_{3}$ should be added to make it irreversible (one direction).
19. Monosaccharide and disaccharides are differentiate by
(1) lodine test
(2) Seliwanoff test
(3) Barfoed test
(4) Tollen's test

Ans. (3)
Sol. Carbohydrates are polyhydroxy aldehydes and ketones. Carbohydrates may have an aldehyde group (aldoses) or ketose group. Barfoed's test distinguishes monosaccharides from disaccharides. In this test, copper acetate in dilute acid is reduced in 30 seconds by monosaccharides whereas disaccharides take several minutes.
20. In DNA complementary base Thymine is-
(1) Uracil
(2) Adenine
(3) Cytosine
(4) Guanine

Ans. (2)
Sol. In DNA thymine bind with adenine by to hydrogen bonding.
21. Statement-1: Aniline is less basic then Acetamide

Statement-2: In Aniline, the lone pair delocalised so electron density reduce.
(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(2) Statement-1 is False, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement -1.
(3) Statement -1 is True, Statement-2 is False.
(4) Statement -1 is False, Statement-2 is False.

Ans. (2)
22. Which of the following given statements on Eutrophication are not correct?
(1) Eutrophication decrease oxygen level in water.
(2) <6ppm oxygen fishes can't survive.
(3) Eutrophication involve anaerobic respiration.
(4) Eutrophication increase oxygen level in water.

Ans. (4)
23. Match the column:

Column-I

(i) Furacine
(ii) Dimetane
(iii) Arsphenamine
(iv) Valium
(1) (i) - b, (ii) - a, (iii) - c, (iv) - d
(3) (i) - a, (ii) - d, (iii) - c, (iv) - b

Column-II

(a) Antiseptic
(b) Synthetic antihistamine
(c) Tranquilizer
(d) Antibiotic
(2) (i) - a, (ii) - b, (iii) - d, (iv) - c
(4) (i) - c, (ii) - d, (iii) - a, (iv) - b

Ans. (2)
24. What is formula of mustard gas-
(1)

(2)

(3)

(4)

Ans. (1)
25. Stability of given molecules is:

(i)

(ii)
$\mathrm{CH} \equiv \stackrel{\oplus}{\mathrm{C}}$

(iv)
(1) i $>$ ii $>$ iv $>$ iii
(2) i $>$ ii $>$ iii $>$ iv
(3) i $>$ ii $>$ iii $>$ iv
(4) iv $>$ iii $>$ i $>$ ii

Ans. (1)
26. Staggered and eclipsed form of ethane are
(1) Enantiomer
(2) Anomer
(3) Epimer
(4) Rotamer

Ans. (4)

